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Search for universality in one-dimensional ballistic annihilation kinetics
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We study the kinetics of ballistic annihilation for a one-dimensional ideal gas with continuous velocity
distribution. A dynamical scaling theory for the long-time behavior of the system is derived. Its validity is
supported by extensive humerical simulations for several velocity distributions. This leads us to the conjecture
that all the continuous velocity distributions(v) that are symmetric, regular, and such tlg0)#0 are
attracted in the long-time regime towards the same Gaussian distribution and thus belong to the same univer-
sality class. Moreover, it is found that the particle density decays(ds~t~ ¢, with a=0.785+=0.005.
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PACS numbeis): 05.40+j, 82.20.Mj, 05.20.Dd

[. INTRODUCTION (—1<u<0), they found that the exponent was nonuni-
versal and was depending continuously on the valug of
Ballistically controlled reactions provide simple examplesThis dependence was confirmed by Monte Carlo simulations.
of nonequilibrium systems with complex kinetics and haveNote that the particular cage=0 corresponds to a uniform
recently attracted a lot of interegt—9]. They consist of an distribution. In this case and in one dimension, numerical
assembly of particles moving freely between collisions withintegration of the Boltzmann equation led ée=0.77, while
given velocities. When two particles meet, they instantaMonte Carlo simulations gavee=0.76. These values are
neously annihilate each other and disappear from the systemery different from the ones obtained for the discrete two-
In one dimension, it is enough to consider point particles anénd three-velocity distributions.
we shall restrict ourselves to this case here. The system with The distributions considered by Redregral. form a very
only two possible velocities-c or —c has been studied in a special subset of the continuous velocity distributions. So it
pioneering work by Elskens and Frisgh]. Using combina- would not be justified to generalize their conclusions. A
torial analysis, they showed that, in the long-time limit, thedeeper understanding of the problem requires one to study a
density of particles was decreasing according to a power lawvider class of distributions. This was our motivation for this
t~'2in the case of a symmetric initial velocity distribution; work. Several questions could be asked. The main issue ana-
Krug and Spohrj2] obtained independently similar results. lyzed here, concerns the existence of universality classes in
Later on, Redneet al. [3,4] have studied the case of more this problem. Namely, does a class of continuous velocity
general velocity distributions. Based on numerical simula-distributions exist for which all its members possess the
tions and mean-field type arguments, they showed that theame exponent and, if so, what are the characteristics of
exponent characterizing the power law decay of the particl¢his class? As we have seen above, to approach this question
density could depend on the velocity distribution. The caseét is not sufficient to consider a mean-field-like approxima-
of a general distribution recently has been approached an&ion, but it is necessary to build up a theory taking into ac-
lytically by Piasecki[5] and Drozet al. [6,7]. It was shown count the fluctuations.
that the annihilation dynamics reduced exactly to a single This paper is organized as follows. In Sec. Il we define
closed equation for the two-particle conditional probabilitythe model and present the main ideas and conclusions ob-
[5]. A method that permits one to solve this evolution equa+tained within the analytical approach developed by Piasecki
tion for discrete velocity distributions was developed @  [5] and Drozet al.[6,7]. Based on those results, a dynamical
and explicitly applied to the case of a symmetric three-scaling theory is developed in Sec. lll, whose validity is
velocity distribution. It turns out that, on the one hand, dif- confirmed by extensive numerical simulations in Sec. IV.
ferent dynamical behaviors can occur depending on the relaFhree different continuous velocity distributiof§aussian,
tive probability weights given to the three velocities and, onuniform, and Lorentzianare studied. We found that they are
the other hand, the fluctuations play a very important roleall attracted during the time evolution towards a Gaussian
invalidating the predictions of mean-field or Boltzmann-like distribution for which the decay exponent i8=0.785
approaches. +0.005. It is conjectured that all the continuous velocity
The case of continuous velocity distributions was consid-distributions regular near the origin and having a finite non-
ered by Ben-Naim and co-workef3]. Within a Boltzmann  zero value forv =0 are attracted by the same Gaussian dis-
approximation, they showed that the particle density was detribution and thus belong to the same universality class.
creasing according to a power law®. Moreover, for initial  Moreover, it is shown why the velocity distributions with a
velocity distributions with a power-law dependence neampower-law dependence with negative expongnhear the
the origin and a cutoff avg, i.e., ¢(v)~|v|*6(vy—|v|) origin are not attracted by the Gaussian distribution and can
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lead to nonuniversal exponents. Final remarks are made in

Sec. V and the numerical algorithm used in the simulationsis (2,3, ... s|1;t)=H u(jli—1;t), s=34,..
explained in the Appendix. =2

(6)

Il. MODEL provided that this condition is fulfilled at time=0. As a
consequenceu(2|1;t) has the extraordinary property to

We assume that initially the particles are uniformly dis- X X ; :
y P y bey exactly the closed nonlinear integro-differential equa-

tributed in space, according to the Poisson law, without ang
correlations between their velocities. Note that distributions'?" (3). L .

other than the Poisson one could be considered as long as AS We shall see later, it will be more convenient to con-
one is dealing with a renewal procesee[10] for the defi-  Sider ¥(Xz,v2|X1,v1;t)=v(2[1;) the (conditiona) density
nition of a renewal processThe fundamental role in the ©f Particles with velocitw,, which are at a distanog— x;
analysis made if5,6] is played by the distribution of nearest of a given particle of velocity ;. With Eq. (6) it follows that
neighbors. Suppose that at timehere is a particle at point »(2|1;t) can be expressed as

X4 in the fluid, moving with velocityy,;. We denote by

V(2|1;t)=,u,(2|1;t)+523fd3~--fds,u(2|s;t)

p(X2,02/X1,01;1) 1)

the conditional probability density for finding its right near- X u(s|s—1;t)- - u(3|1;1). (7)

est neighbor at distance,;=x,—x;>0, with velocity v,. _ . _

The density(1) satisfies the normalization condition We can then write a new closed equation governing the dy-
namics of v, which, for a translationary invariant system,
takes the form

f d2 u(2]1;t)=1, )

Jd J
o Foais +0120(v129) 6(%)

where a convenient shorthand notation v(X,v2[001;1)
ji=(x,v;), dj=dxdv;, j=1.2,...,

! . ) . _f dU3{0(Ul3)U13V(O+,U3|0,U1;t)
has been used. As a rigorous consequence of the dynamics of
ballistic annihilation[5,6], this quantity obeys the equation X[ v(X,05|003;t) — v(X,v5|001;t)]

+ 0(v23)V 257(0+ 03|00 t) ¥(X,v5|0p4;t)

d J J
+v +v,—+C(1, 2)}M(2|1;t)
at T taxy 2%, + 0(v32)v3ov(0+,05|0v ;) v(X,v50pq;t)].

:J d3[C(1,39 u(3|1;t)—C(2,3) u(3]2;t) (2] 1;1) A complete description of the dynamic of the system is ob-
tained once the equation of motion fiv;t), the density of
particles with a velocityv, is given. It is readily obtained

+f d3f d4C(3,Hu(3|1;t) u(4]3;t) (2]4;1), from the dynamics of ballistic annihilation. One finds

)

J
Ef(vl;t)z - f dv,0(v12)v120(0+,05]004;1) f (V1)
whereC(1,3) is the binary collision operator defined as

C(1,2=v120(v12) 6(X21—0+), (4) _J dv20(v21)v21v(0+,04|0w2; ) f(vy;t).
0(x) is the usual Heaviside function, amd, stands forv, 9
—uv,. If each particle has initially the same continuous prob- o o
ability density#(v) to move with velocityv, the state of the For a symmetric initial conditiorii.e., ¢(v)=¢(—v)],

system is translationally invariant. As a consequenceEd- 9 takes a simplified form

1(2|1;t) depends in the position space only on the distance

Xp [we shall then write (G.uaXiwit)  Zf(uyt)=~f(uyit) f vl 601201270+ ,0|00131)
= u(X1,02/004;t)]. A particular role is played by the value at

of densityu at contact

+0(v2)v217(0+,—v,|0,—vy;1)], (10
m(0+ ’02|0’vl;t):)l(iino“(x’”2|o'vl;t)' (5 \where we used that for a symmetric distribution
x>0

f(vl;t)v(x,v2|0,vl;t)=f(—vz;t)v(x,—vl|0,—v2;t).
The notation @ stresses the fact that the distance between
the particles that are to collide approaches zero through posiFo get a closed analytical form for the particle density
tive values. The higher-order conditional distributionsf(v;t), we thus have to solve E¢B) or at least to obtain the
us(2,3,...8/1;t), s=3,4,... factorize for all timegt>0  density at contact(0+,v,|0v4;t). This is a very difficult
as problem and despite numerous attempts, we have not yet
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been able to complete this program. Accordingly, we choose
a less ambitious approach. In the next section, we shall pro- n(t) f dv I(v;t)f(v;t)
pose a scaling theory fdi(v;t) andv(0+,v,|0v4;t) whose 0 =—
validity will be confirmed by numerical simulations. ( j do f(v;t)
Ill. SCALING THEORY
o : . _ f du J(u)¥(u)
We are mainly interested in the behavior of the system in = —n(H)[M ()] (17)
the long-time limit, where the time dependence of the physi- '
cal quantities of interest is given by power laws. Thus it is du ¥ (u)
natural to try to develop for them a dynamical scaling theory.
The validity of this scaling theory will be attestedposte- 2 )
riori by numerical simulations. M(t) n(t) dv vl (v D) (v;1)
For simplicity, we shall restrict our analysis to symmetric W + W ==
distributions. For dimensional reasons, a time-dependent J dv v?f(v;t)
characteristic velocity should be introduced. For a symmetric
distribution, the average velocity vanishes for all times. )
However, the mean-square velocity, denolké(t), does not f du uJ(u)W¥(u)
vanish. Thus we shall assume tHa#l (t)]*? is the time- =—n(t)[M(t)]¥?
dependent characteristic velocity that will enter into the scal- f du P (u)
ing theory.
Hence we postulate the two scaling laws (18)
n(t) We note that [du J(u)¥(u)/fdu¥(u) and
f(o;t)= ——— W E[M()] ), (1) fdu vI(u)¥(u)/fdu B¥W¥(u) are two constants calledd
[(M(1)] and B, respectively. In the long-time limit, the solution of
Eqgs.(17) and(198) is
v(0+,0,/004;t) as.(17) (18
n(t)~t= ¢, (19
— M 0" w M 0w, M(B] ), (12 ~2p
[M(t)]l/Z 192 gt ’ M(t)"‘t , (20)
. . : . with
wheren(t) is the particle density at timg
a=2A/(A+B), (21
n(t)=fdv f(v;t), (13 B=(B—A)/(A+B). 22)
and For all values ofA andB, the scaling law
a+p=1 (23
fdv v2f(v:t)
M(t)= (14) holds. Note that this scaling law has been obtained already

fdv f(v;t) |

our
It is useful to introduce the intermediate quantisee Eq.

C))

|C(Ul;t):f dvz[e(vlz)vle(0+,02|O,Ul;t) As

+6(v2)v2(0+,—v,|0,—vq;t)]. (15

Using the scaling form¢l1) and(12), one can write

(v t)=n(t)[M (t)]llzJ' dug[ (u;)u,P(0+,u,|0uq)

+60(U)un®(0+, — U,
En(t)[M (t)]llZJc(ul)y

0,—uy)]

(16)
whereu;=v;[M(t)] 2 (i=1,2). The time derivative of the 9
density and the mean-square velocity can be written as

by Ben-Naimet al. [3] from heuristic arguments.
Using this scaling law, it is possible to justifyposteriori

scaling postulate for. Indeed, let us introduce the di-

mensionless correlation functi@(x,v,,v4;t) satisfying

v(X,02|00 ;) =9(X,vp,01;)f(vy;1). (24

shown in Fig. 1, by rescaling both length and time by a

factor b, g should satisfy the following similarity relation

g(X1021vl;t):g(bX1U21Ul;bt)'

Moreover, rescaling the velocities by a factocorresponds
to a dilatation of the time scale by the same factor

g(x,cv,,cvq;t)=g(X,vo,vq;Ct).

Combining these two relations and settibg-n(t) andc
=[M(t)]*? one immediately finds

X,02,01;t) =g(()X,0[M()] Y20 [M()] Zn(t)
X[M(1)]Y2%). (25
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a) X 2a0—1 2J40)
T T =
t iI—a *"B-A"

(29

J.(0) might in principle depend op.. However, it is very
unlikely that its dependence will be such as to exactly com-

U1 & pensate the linear term jm and hence the nonuniversality of
the exponentr. On the contrary, if'(u) satisfies

0 li ¥ 0 (30
t = imu—-—=
Iy — 'Ult Lo — 'Ugt u—0 ‘I’(U)
[which is the case ift'(u) and¥’(u) are continuous func-

b) bry bxo bt tions atu=0 and if ¥(0)+ 0], we find that

2a—1 2340

1“_ - BC_( A). 3D

'U]_ /02 o

Hence« will be universal only if the right-hand side does
not depend on the details of the initial distribution. Unfortu-
b(:r;l _ 1)125) b(xg _ vgt) t=0 nately we are unaplg to prove analyyically this indep(_andence
on the initial conditions. However, in the next section we
FIG. 1. lllustration of the similarity relation satisfied by the Shall show that this property is supported by precise numeri-
correlation functiorg(x,;,v,,v1;t). (@) A typical two-particle con-  ¢al simulations for several initial velocity distributions. Fur-
figuration is shown at time. Initially the positions of the particles thermore, we shall find on the same footing tHatu) is a
arex; — v t andx,—v,t. They move respectively with velocities universal Gaussian function. Note that fé(u) to be uni-
andv,. (b) Same configuration in which time and distances haveversal, one should have, according to H&S) and(31), that
been rescaled by a factbr (the velocities remaining unchanged J(u)/(B—A) is universal.
The trapezoid defined by the poinkgx;—uvt),b(Xx,—v,t) att
=0 andbx,,bx; at bt in (b) is similar to the one defined by the IV. NUMERICAL SIMULATIONS
pointsx; —vt,X,—v,t att=0 andx,,x; att in (a).

To test the validity of our scaling formd1) and(12), we
For sufficiently long time, the scaling lay23) implies that have performed numerical simulations in one dimension.
n(t)[M(t)]¥2~t~1. Using Eq.(24) and the scaling form The method we used is an exact synchronous time evolution
(11) for f, one recovers then our scaling postuldt®). This ~ Whose algorithm is detailed in the Appendix. We considered
confirms the self-consistency of our theory. Furthermore b);he following three different initial continuous velocity dis-
introducing the scaling postulatésl) and (12) in Eq. (10)  tributions: (i) a Gaussian distribution

one obtains )
B(0) = ———exp| — (32
V)= - >
J 3A-B B-A ) V27, 2v§
—Hi=—|——¥ () - ——ut' W) [n(t)]
with vo=[M(0)]*?=1; (ii) a uniform distribution with a
=—[n(t)]2I(W)¥(u) (26)  cutoff
. . 1
and hence an expression relatigu) to J.(u): - _
c $(0)= .- 0vo=lo)), (33
3A-B — B—Au‘P (W) =JJu). (27 with vy= V3, such thatM (0)=1; and(iii) a Lorentzian dis-
2 2 W(u tribution
Let us now suppose that, initiallyf(v;0)~|v|“6(vg 1 v,
—|v|), with —1<u<0. In this case Ben-Naim d)(v):;ﬁ’ (34)
votv

et al. [3] argue that the long-time behavior oft) is non-
universal ( dependentand thatW(u) retains the same
power-law dependence &sin particular it diverges lik¢u|*

for u—0. What could we say about this case within our
scaling approach? Letting— 0 in Eqg. (27), we find

with characteristic velocity ,=1. For each simulation, we
started with 28 particles on a periodic chain of lengtH 21].
Note that the initial characteristic collision timer,
=[n(0)vy] ! is of the order 10°. We choose to distribute
the particles uniformly on the line according to a Poisson
SA-B _ HM:J (0) (28) law. However, we verified that a regular spacing distribution
2 2 ann does not modify the long-time dynamics of the system.
The time-dependent velocity distribution has been moni-
or in terms of the exponent, tored, yielding the following results. First, we plotted on a
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TABLE I. Numerical values of the exponentsand 8 obtained
from the simulationgsee Figs. 2— ¥ The error is* 0.005 for each
value ofa andB. Results are given for three different initial veloc-

ity distributions. 10° 4
Velocity distribution a B a+ B

Gaussian 0.785 0.195 0.980

uniform 0.795 0.195 0.990 2
Lorentzian 0.780 0.195 0.975 107+

double-logarithmic scale the number of particl¢ise root-
mean-square velocity of a parti¢glas a function of time. The
exponentse (B) are then extracted from the slopes of the
curves. Linear regressions were made for various sets of
points. The retained value is the one corresponding to the
best fit and the error is given by the maxinum deviation.
Typically, the fits were made for time intervals such that 10° LN
10 3<t=<1. For longer times, the system starts to “feel” 10°  10*  10°  10° 107

the boundary conditions. The lower limit of the time interval t

corresponds approximately to the beginning of the linear re-

gime. We remark, however, that at this time about 98% of FIG. 3. Plot of the relative densitfcircle) and the root-mean-
the partlcles have already d|Sappeared The results are givéﬁuare Velocity(plus) as a function of time, for a uniform initial
in Table | and Figs. 2—4. Data were averaged ovet 10 Velocity distribution ¢(v)=6(3—|v[)/V12, so thatM(0)=1.

samples for the Gaussian distribution and fd the uniform  The periodic chain of length 2 initially contained®particles. Data
and Lorentzian cases, respectively are averaged over $@amples. The two straight lines are obtained

We see that the scaling law+ 8=1 is well satisfied for by linear regression over a subset of poiftypically for t between

—3
the different distributions. For the Lorentzian one, however,10 and 3.

the results are less precise. This is due to the fact that the

scaling regime sets in for longer times and longer simulatained =0.76 and$=0.22, but with a slightly different
tions would be needed to reach the same precision. Note thatgorithm(which involved diffusion in addition to the ballis-
for a uniform velocity distribution, Ben-Nairet al. [3] ob-  tic motiorn) and a poorer statistics.

From the values quoted in Table I, we immediately de-
duce, at least for the three different velocity distributions
considered here, that the exponeatand 8 are the same. In
view of the arguments presented in Sec. Ill, we are led to

10
10° - - - 1 :
10° 10" 10° 10° 10°
t
FIG. 2. Plot of the relative densiticircle) and the root-mean- 10° . ‘ ‘ ‘ ‘ ‘ ‘ .
square velocity(plus) as a function of time, for a Gaussian initial 10°  10*  10°  10° 107
velocity distribution ¢(v)=exp(—v%2)/\/2r. The periodic chain ¢

of length 2 initially contained 2 particles. Data are averaged over
10* samples. The two straight lines are obtained by linear regres- FIG. 4. Same as in Fig. 3 for a Lorentzian initial velocity dis-
sion over a subset of pointsypically for t between 10° and 1. tribution ¢(v)=m"1(1+0v?) "L
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0t=10°
0.08 + ot=10 0.08 + &
§§§ o1=10" ik ot=10"
o' 8 At=10° % o At=10°
* 2 S 2
" +1=10 M +1=10
0.06 1 » =10 0.06 1 &4 =10
i x * =1 § § * =1
*
* * o 8
9" & & 9" & A&
0.04 + % N 0.04 % 3
) & & L3
* ¥ %
8 o *
*
0.02 ¢ 0.02 ¢ g &
& LN
£
0.00 : | : 0.00 : | |
-4.0 -2.0 0.0 20 4.0 -4.0 -2.0 0.0 20 4.0
u=vM (1) u=vM"(t)
FIG. 5. Plot of the scaling functior for a Gaussian initial FIG. 6. Plot of the scaling functiont for a uniform initial

velocity distribution(see Fig. 2 as a function of the reduced veloc- velocity distribution(see Fig. 3as a function of the reduced veloc-

ity u=v[M(t)]" Y2 for seven different times. Data are averagedity u=v[M(t)]~Y?for five different times. Data are averaged over

over 10 samples. Note thaP keeps its Gaussian character as long 10° samples. Note that after a transient regime not represented here,

ast<1. V¥ is attracted towards a Gaussian-like scaling distributamsoon
ast=10"%).

conjecture that there is universality for a wide class of initial N o .

conditions. However, this universality should not hold for !n addition, the range of validity of our scaling postulates

initial distributions that diverge or vanish at=0 [see Eq. C¢an be tested. Indeed, from Eq$7) and(18) one sees that

(30)].

The scaling functiond (u) have also been measured for n(t)=conse<{n()[M(t)]*3*, (36)
the three different initial distributions. In Figs. 5—7 the scal-
ing functionsW¥ (u) are plotted versus the reduced velocity
u=v[M(t)]" Y2 For the Gaussian case, one séEw). 5
that¥ keeps its Gaussian shape unt0.1. In fact, a finer

so that the log-log plot of(t) versusn(t)[M(t)]*? should
give a straight line. In Fig. 8 we reproduce this plot for a
Gaussian initial distribution. We remark that Eg6) is sat-

analysis of the six first even moments f ((u?"), with n o
=0,1,...,5) shows that¥ loses its Gaussian character oo
whent=0.2, i.e., when fewer than 50 particles remain in the 0.08 ii
system. Ultimately, when fewer than 10 particles remain in ' %ﬁ -10*
the system¥ tends to a bimodal distribution. We emphasize o ;‘é Zt:1o'3
again that this late-stage behavior is an artifact of the finite- # : N t;10'2
ness of the system. In the thermodynamic limit, the true 0.06 - & s L 1=10"

asymptotic behavior would be Gaussian-like. Similar conclu-

sions can be drawn for the uniform and Lorentzian céses

Figs. 6 and 7. Indeed, after a transient regim, adopts a
Gaussian profile untit=0.2. These conclusions are again B
confirmed by the analysis of the moments. Thus, for these
three distributions, we conclude that in addition to the uni-
versal behavior of the exponent, the scaling functit(s)

are also the same. There is an attractive Gaussian-like scaling

0.04 +

distribution in the long-time regime: 0.02 +
¥(u) = - u?/2) (35
u) = —=exp(—u/2).
V2 0.00 |
i 40 20 00 20 40
u=vM™ (1)

Here again we are led to conjecture that such a behavior
would be valid for any velocity distribution that takes a finite  FIG. 7. Same as in Fig. 6 for a Lorentzian initial velocity dis-
nonzero value ab =0 and is regular near=0. tribution.
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tempts we have not yet been able to prove this conjecture in
the framework of our exact analytical approach. We have
only shown that a Gaussian distribution is compatible, in the
long-time regime, with the exact dynamical equati@).
However, we have not been able to prove that this Gaussian
distribution was the only possible solution.
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10%+

APPENDIX: NUMERICAL ALGORITHM

10° &

rs = 5 To simulate the ballistic annihilation in one dimension,

10° 10 10 the simplest algorithm is probably the standard molecular
n(HyM™(z) dynamics: Starting from a given configuration, one identifies
the shortest collision time, removes the two colliding par-
ticles, and calculates the new positions of the remaining par-
ticles at this time. Starting from this new configuration, the
process is iterated. This algorithm is very simple but not very
gfficient, the computing time increasing with the number of

FIG. 8. A log-log plot of the density as a function of
n(t)[M(t)]1¥? for a Gaussian initial velocity distributio(data are
the same Fig. 2; note that large valuesn¢f)[ M (t)]¥? correspond
to short timeg. The comparison with a straight line is excellent for
both short and long times. This shows that the range of validity o

7 2
our scaling postulate is very wide for a Gaussian initial condition. ParticlesN asQ(N ). . .
The numerical algorithm we used instead has been largely

isfied for times as short as-10"° (at this time less that 20% inspired by the one developed by Krapivskyal. [4]. The
of the particles have already reacteahd as long as=5. idea s to establish the list of all th€true™ ) collision times
Note that the slopéi.e., the exponent) obtained by linear ~arranged in chronological order. From the initial condition
regression is slightly larger than the value obtained from FigWe compute the collision times of each particle with its right
2. This results from the fact that the sum 8 given by the ~nearest neighbor and sort those times into an ascending se-
value of the exponents measured on Fig. 2 gives 0.980 rathé€s, calledA, using a standard sorting algorith(aee, for
than strictly 1. Multiplying the slope of Fig. 8 by 0.980 re- €xample[12]). The shortest time of this set corresponds to
produces indeed the value ef quoted in Table I. For the the first true collision time and is the first member of the list
uniform and Lorentzian distributions the range of validity of Of the “true collision times”; simultaneously it is removed
the scaling postulates is smaller, beginning only near from A. Then one removes the pair of particles,i{+1)
=103, This fact confirms the particular role played by the corr.elspon.dmg to thIS' first co'II|S|on. As'a consequence, the
Gaussian distribution in this problem. collision times associated with the paira<{1,n) and (n
+1,n+2) should be discarded from, producing a trun-
cated sorted list calledd’. The collision time of the new
nearest-neighbor paimt1,n+2) is computed and is the
first element of a new unsorted list, calldd The process is
We have studied the kinetics of ballistic annihilation for athen iterated starting with the sorted lidt as long as its first
one-dimensional ideal gas with continuous velocity distribu-element is shorter than the shortest elemento¥When this
tion. Starting from an exact analytical approach previouslyis no longer true, we merge both listd{ and.V) into a new
derived, we established a scaling theory for the long-timeone that is sorted. This last list replage and the process
behavior of such systems. The validity of this scaling theorycontinues until at most one particle remains in the system.
has been tested numerically for three different initial con-For the continuous velocity distribution we considered, this
tinuous velocity distributiongGaussian, uniform and Lorent- merging step betweerd’ and N occurs very rarely. For
zian). Both the dynamical exponents and the scaling funcexample, for a Gaussian initial velocity distribution, it takes
tions are the same for the three cases. This led us tplace approximately 100 times fot2iterations of a system
conjecture that all the continuous velocity distributions thatcontaining initially 28 particles and the whole simulation
take a finite nonzero value at=0 and are regular near  used about 30 s of CPU on a Hewlett-Packard 9000 Serie
=0 are attracted towards a Gaussian distribution and thu800 workstation. The computing time increases with the
belong to the same universality class. Despite several akumber of particledN roughly asO(N%4nN).

V. CONCLUDING REMARKS
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