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Search for universality in one-dimensional ballistic annihilation kinetics

Pierre-Antoine Rey and Michel Droz
Département de Physique The´orique, Universite´ de Gene`ve, CH-1211 Gene`ve 4, Switzerland

Jarosław Piasecki
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~Received 18 August 1997!

We study the kinetics of ballistic annihilation for a one-dimensional ideal gas with continuous velocity
distribution. A dynamical scaling theory for the long-time behavior of the system is derived. Its validity is
supported by extensive numerical simulations for several velocity distributions. This leads us to the conjecture
that all the continuous velocity distributionsf(v) that are symmetric, regular, and such thatf(0)Þ0 are
attracted in the long-time regime towards the same Gaussian distribution and thus belong to the same univer-
sality class. Moreover, it is found that the particle density decays asn(t);t2a, with a.0.78560.005.
@S1063-651X~98!01201-X#
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I. INTRODUCTION

Ballistically controlled reactions provide simple exampl
of nonequilibrium systems with complex kinetics and ha
recently attracted a lot of interest@1–9#. They consist of an
assembly of particles moving freely between collisions w
given velocities. When two particles meet, they instan
neously annihilate each other and disappear from the sys
In one dimension, it is enough to consider point particles a
we shall restrict ourselves to this case here. The system
only two possible velocities1c or 2c has been studied in
pioneering work by Elskens and Frisch@1#. Using combina-
torial analysis, they showed that, in the long-time limit, t
density of particles was decreasing according to a power
t21/2 in the case of a symmetric initial velocity distribution
Krug and Spohn@2# obtained independently similar result
Later on, Redneret al. @3,4# have studied the case of mo
general velocity distributions. Based on numerical simu
tions and mean-field type arguments, they showed that
exponent characterizing the power law decay of the part
density could depend on the velocity distribution. The ca
of a general distribution recently has been approached
lytically by Piasecki@5# and Drozet al. @6,7#. It was shown
that the annihilation dynamics reduced exactly to a sin
closed equation for the two-particle conditional probabil
@5#. A method that permits one to solve this evolution equ
tion for discrete velocity distributions was developed in@6#
and explicitly applied to the case of a symmetric thre
velocity distribution. It turns out that, on the one hand, d
ferent dynamical behaviors can occur depending on the r
tive probability weights given to the three velocities and,
the other hand, the fluctuations play a very important ro
invalidating the predictions of mean-field or Boltzmann-li
approaches.

The case of continuous velocity distributions was cons
ered by Ben-Naim and co-workers@3#. Within a Boltzmann
approximation, they showed that the particle density was
creasing according to a power lawt2a. Moreover, for initial
velocity distributions with a power-law dependence ne
the origin and a cutoff atv0, i.e., f(v);uvumu(v02uvu)
571063-651X/98/57~1!/138~8!/$15.00
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(21,m,0), they found that the exponenta was nonuni-
versal and was depending continuously on the value ofm.
This dependence was confirmed by Monte Carlo simulatio
Note that the particular casem50 corresponds to a uniform
distribution. In this case and in one dimension, numeri
integration of the Boltzmann equation led toa50.77, while
Monte Carlo simulations gavea50.76. These values ar
very different from the ones obtained for the discrete tw
and three-velocity distributions.

The distributions considered by Redneret al. form a very
special subset of the continuous velocity distributions. S
would not be justified to generalize their conclusions.
deeper understanding of the problem requires one to stu
wider class of distributions. This was our motivation for th
work. Several questions could be asked. The main issue
lyzed here, concerns the existence of universality classe
this problem. Namely, does a class of continuous veloc
distributions exist for which all its members possess
same exponenta and, if so, what are the characteristics
this class? As we have seen above, to approach this que
it is not sufficient to consider a mean-field-like approxim
tion, but it is necessary to build up a theory taking into a
count the fluctuations.

This paper is organized as follows. In Sec. II we defi
the model and present the main ideas and conclusions
tained within the analytical approach developed by Piase
@5# and Drozet al. @6,7#. Based on those results, a dynamic
scaling theory is developed in Sec. III, whose validity
confirmed by extensive numerical simulations in Sec.
Three different continuous velocity distributions~Gaussian,
uniform, and Lorentzian! are studied. We found that they ar
all attracted during the time evolution towards a Gauss
distribution for which the decay exponent isa50.785
60.005. It is conjectured that all the continuous veloc
distributions regular near the origin and having a finite no
zero value forv50 are attracted by the same Gaussian d
tribution and thus belong to the same universality cla
Moreover, it is shown why the velocity distributions with
power-law dependence with negative exponentm near the
origin are not attracted by the Gaussian distribution and
138 © 1998 The American Physical Society
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57 139SEARCH FOR UNIVERSALITY IN ONE-DIMENSIONAL . . .
lead to nonuniversal exponents. Final remarks are mad
Sec. V and the numerical algorithm used in the simulation
explained in the Appendix.

II. MODEL

We assume that initially the particles are uniformly d
tributed in space, according to the Poisson law, without
correlations between their velocities. Note that distributio
other than the Poisson one could be considered as lon
one is dealing with a renewal process~see@10# for the defi-
nition of a renewal process!. The fundamental role in the
analysis made in@5,6# is played by the distribution of neare
neighbors. Suppose that at timet there is a particle at poin
x1 in the fluid, moving with velocityv1. We denote by

m~x2 ,v2ux1 ,v1 ;t ! ~1!

the conditional probability density for finding its right nea
est neighbor at distancex215x22x1.0, with velocity v2.
The density~1! satisfies the normalization condition

E d2 m~2u1;t !51, ~2!

where a convenient shorthand notation

j [~xj ,v j !, d j[dxjdv j , j 51,2, . . . ,

has been used. As a rigorous consequence of the dynam
ballistic annihilation@5,6#, this quantity obeys the equation

F ]

]t
1v1

]

]x1
1v2

]

]x2
1C~1,2!Gm~2u1;t !

5E d3@C~1,3!m~3u1;t !2C~2,3!m~3u2;t !#m~2u1;t !

1E d3E d4 C~3,4!m~3u1;t !m~4u3;t !m~2u4;t !,

~3!

whereC(1,3) is the binary collision operator defined as

C~1,2!5v12u~v12!d~x21201 !, ~4!

u(x) is the usual Heaviside function, andv12 stands forv1
2v2. If each particle has initially the same continuous pro
ability densityf(v) to move with velocityv, the state of the
system is translationally invariant. As a consequen
m(2u1;t) depends in the position space only on the dista
x21 @we shall then write m(x2 ,v2ux1 ,v1 ;t)
5m(x21,v2u0,v1 ;t)#. A particular role is played by the valu
of densitym at contact

m~01,v2u0,v1 ;t !5 lim
x→0
x.0

m~x,v2u0,v1 ;t !. ~5!

The notation 01 stresses the fact that the distance betw
the particles that are to collide approaches zero through p
tive values. The higher-order conditional distributio
ms(2,3, . . . ,su1;t), s53,4, . . . , factorize for all timest.0
as
in
is

y
s
as

of

-

,
e

n
si-

ms~2,3, . . . ,su1;t !5)
j 52

s

m~ j u j 21;t !, s53,4, . . . ,

~6!

provided that this condition is fulfilled at timet50. As a
consequence,m(2u1;t) has the extraordinary property t
obey exactly the closed nonlinear integro-differential eq
tion ~3!.

As we shall see later, it will be more convenient to co
sider n(x2 ,v2ux1 ,v1 ;t)[n(2u1;t) the ~conditional! density
of particles with velocityv2, which are at a distancex22 x1
of a given particle of velocityv1. With Eq. ~6! it follows that
n(2u1;t) can be expressed as

n~2u1;t !5m~2u1;t !1(
s53

` E d3•••E ds m~2us;t !

3m~sus21;t !•••m~3u1;t !. ~7!

We can then write a new closed equation governing the
namics ofn, which, for a translationary invariant system
takes the form

F ]

]t
1v21

]

]x
1v12u~v12!d~x!Gn~x,v2u0,v1 ;t !

52E dv3$u~v13!v13n~01,v3u0,v1 ;t !

3@n~x,v2u0,v3 ;t !2n~x,v2u0,v1;t !#

1u~v23!v23n~01,v3u0,v2 ;t !n~x,v2u0,v1;t !

1u~v32!v32n~01,v2u0,v3 ;t !n~x,v3u0,v1;t !%. ~8!

A complete description of the dynamic of the system is o
tained once the equation of motion forf (v;t), the density of
particles with a velocityv, is given. It is readily obtained
from the dynamics of ballistic annihilation. One finds

]

]t
f ~v1 ;t !52E dv2u~v12!v12n~01,v2u0,v1 ;t ! f ~v1 ;t !

2E dv2u~v21!v21n~01,v1u0,v2 ;t ! f ~v2 ;t !.

~9!

For a symmetric initial condition@i.e., f(v)5f(2v)#,
Eq. 9 takes a simplified form

]

]t
f ~v1 ;t !52 f ~v1 ;t !E dv2@u~v12!v12n~01,v2u0,v1 ;t !

1u~v21!v21n~01,2v2u0,2v1 ;t !#, ~10!

where we used that for a symmetric distribution

f ~v1 ;t !n~x,v2u0,v1 ;t !5 f ~2v2 ;t !n~x,2v1u0,2v2 ;t !.

To get a closed analytical form for the particle dens
f (v;t), we thus have to solve Eq.~8! or at least to obtain the
density at contactn(01,v2u0,v1 ;t). This is a very difficult
problem and despite numerous attempts, we have not
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140 57REY, DROZ, AND PIASECKI
been able to complete this program. Accordingly, we cho
a less ambitious approach. In the next section, we shall
pose a scaling theory forf (v;t) andn(01,v2u0,v1 ;t) whose
validity will be confirmed by numerical simulations.

III. SCALING THEORY

We are mainly interested in the behavior of the system
the long-time limit, where the time dependence of the phy
cal quantities of interest is given by power laws. Thus it
natural to try to develop for them a dynamical scaling theo
The validity of this scaling theory will be attesteda poste-
riori by numerical simulations.

For simplicity, we shall restrict our analysis to symmet
distributions. For dimensional reasons, a time-depend
characteristic velocity should be introduced. For a symme
distribution, the average velocity vanishes for all time
However, the mean-square velocity, denotedM (t), does not
vanish. Thus we shall assume that@M (t)#1/2 is the time-
dependent characteristic velocity that will enter into the sc
ing theory.

Hence we postulate the two scaling laws

f ~v;t !5
n~ t !

@M ~ t !#1/2
C„v@M ~ t !#21/2

…, ~11!

n~01,v2u0,v1 ;t !

5
n~ t !

@M ~ t !#1/2
F„01,v2@M ~ t !#21/2u0,v1@M ~ t !#21/2

…, ~12!

wheren(t) is the particle density at timet,

n~ t !5E dv f ~v;t !, ~13!

and

M ~ t !5

E dv v2f ~v;t !

E dv f ~v;t !

. ~14!

It is useful to introduce the intermediate quantity@see Eq.
~9!#

I c~v1 ;t !5E dv2@u~v12!v12n~01,v2u0,v1 ;t !

1u~v21!v21n~01,2v2u0,2v1 ;t !#. ~15!

Using the scaling forms~11! and ~12!, one can write

I c~v1 ;t !5n~ t !@M ~ t !#1/2E du2@u~u12!u12F~01,u2u0,u1!

1u~u21!u21F~01,2u2u0,2u1!#

[n~ t !@M ~ t !#1/2Jc~u1!, ~16!

whereui5v i@M (t)#21/2 ( i 51,2). The time derivative of the
density and the mean-square velocity can be written as
e
o-

n
i-

.

nt
ic
.

l-

ṅ~ t !

n~ t !
52

E dv I c~v;t ! f ~v;t !

E dv f ~v;t !

52n~ t !@M ~ t !#1/2
E du Jc~u!C~u!

E du C~u!

, ~17!

Ṁ ~ t !

M ~ t !
1

ṅ~ t !

n~ t !
52

E dv v2I c~v;t ! f ~v;t !

E dv v2f ~v;t !

52n~ t !@M ~ t !#1/2
E du u2Jc~u!C~u!

E du u2C~u!

.

~18!

We note that *du Jc(u)C(u)/*du C(u) and
*du u2Jc(u)C(u)/*du u2C(u) are two constants calledA
and B, respectively. In the long-time limit, the solution o
Eqs.~17! and ~18! is

n~ t !;t2a, ~19!

M ~ t !;t22b, ~20!

with

a52A/~A1B!, ~21!

b5~B2A!/~A1B!. ~22!

For all values ofA andB, the scaling law

a1b51 ~23!

holds. Note that this scaling law has been obtained alre
by Ben-Naimet al. @3# from heuristic arguments.

Using this scaling law, it is possible to justifya posteriori
our scaling postulate forn. Indeed, let us introduce the d
mensionless correlation functiong(x,v2 ,v1 ;t) satisfying

n~x,v2u0,v1 ;t !5g~x,v2 ,v1 ;t ! f ~v2 ;t !. ~24!

As shown in Fig. 1, by rescaling both length and time by
factor b, g should satisfy the following similarity relation

g~x,v2 ,v1 ;t !5g~bx,v2 ,v1 ;bt!.

Moreover, rescaling the velocities by a factorc corresponds
to a dilatation of the time scale by the same factor

g~x,cv2 ,cv1 ;t !5g~x,v2 ,v1 ;ct!.

Combining these two relations and settingb5n(t) and c
5@M (t)#1/2, one immediately finds

g~x,v2 ,v1 ;t !5g„n~ t !x,v2@M ~ t !#21/2,v1@M ~ t !#21/2;n~ t !

3@M ~ t !#1/2t…. ~25!
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For sufficiently long time, the scaling law~23! implies that
n(t)@M (t)#1/2;t21. Using Eq. ~24! and the scaling form
~11! for f , one recovers then our scaling postulate~12!. This
confirms the self-consistency of our theory. Furthermore
introducing the scaling postulates~11! and ~12! in Eq. ~10!
one obtains

]

]t
f ~v;t !52F3A2B

2
C~u!2

B2A

2
uC8~u!G@n~ t !#2

52@n~ t !#2Jc~u!C~u! ~26!

and hence an expression relatingC(u) to Jc(u):

3A2B

2
2

B2A

2
u

C8~u!

C~u!
5Jc~u!. ~27!

Let us now suppose that, initially,f (v;0);uvumu(v0
2uvu), with 21,m,0. In this case Ben-Naim
et al. @3# argue that the long-time behavior ofn(t) is non-
universal (m dependent! and thatC(u) retains the same
power-law dependence asf ; in particular it diverges likeuuum
for u→0. What could we say about this case within o
scaling approach? Lettingu→0 in Eq. ~27!, we find

3A2B

2
2

B2A

2
m5Jc~0!, ~28!

or in terms of the exponenta,

FIG. 1. Illustration of the similarity relation satisfied by th
correlation functiong(x21,v2 ,v1 ;t). ~a! A typical two-particle con-
figuration is shown at timet. Initially the positions of the particles
arex12v1t andx22v2t. They move respectively with velocitiesv1

and v2. ~b! Same configuration in which time and distances ha
been rescaled by a factorb ~the velocities remaining unchanged!.
The trapezoid defined by the pointsb(x12v1t),b(x22v2t) at t
50 andbx2 ,bx1 at bt in ~b! is similar to the one defined by th
pointsx12v1t,x22v2t at t50 andx2 ,x1 at t in ~a!.
y

r

2a21

12a
5m1

2Jc~0!

B2A
. ~29!

Jc(0) might in principle depend onm. However, it is very
unlikely that its dependence will be such as to exactly co
pensate the linear term inm and hence the nonuniversality o
the exponenta. On the contrary, ifC(u) satisfies

lim
u→0

u
C8~u!

C~u!
50 ~30!

@which is the case ifC(u) andC8(u) are continuous func-
tions atu50 and if C(0)Þ0#, we find that

2a21

12a
5

2Jc~0!

B2A
. ~31!

Hencea will be universal only if the right-hand side doe
not depend on the details of the initial distribution. Unfort
nately we are unable to prove analytically this independe
on the initial conditions. However, in the next section w
shall show that this property is supported by precise num
cal simulations for several initial velocity distributions. Fu
thermore, we shall find on the same footing thatC(u) is a
universal Gaussian function. Note that forC(u) to be uni-
versal, one should have, according to Eqs.~27! and~31!, that
Jc(u)/(B2A) is universal.

IV. NUMERICAL SIMULATIONS

To test the validity of our scaling forms~11! and~12!, we
have performed numerical simulations in one dimensi
The method we used is an exact synchronous time evolu
whose algorithm is detailed in the Appendix. We conside
the following three different initial continuous velocity dis
tributions: ~i! a Gaussian distribution

f~v !5
1

A2pv0

expS 2
v2

2v0
2D , ~32!

with v05@M (0)#1/251; ~ii ! a uniform distribution with a
cutoff

f~v !5
1

2v0
u~v02uvu!, ~33!

with v05A3, such thatM (0)51; and~iii ! a Lorentzian dis-
tribution

f~v !5
1

p

v0

v0
21v2

, ~34!

with characteristic velocityv051. For each simulation, we
started with 218 particles on a periodic chain of length 2@11#.
Note that the initial characteristic collision timetc
5@n(0)v0#21 is of the order 1025. We choose to distribute
the particles uniformly on the line according to a Poiss
law. However, we verified that a regular spacing distributi
does not modify the long-time dynamics of the system.

The time-dependent velocity distribution has been mo
tored, yielding the following results. First, we plotted on

e
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142 57REY, DROZ, AND PIASECKI
double-logarithmic scale the number of particles~the root-
mean-square velocity of a particle! as a function of time. The
exponentsa (b) are then extracted from the slopes of t
curves. Linear regressions were made for various set
points. The retained value is the one corresponding to
best fit and the error is given by the maxinum deviatio
Typically, the fits were made for time intervals such th
1023&t&1. For longer times, the system starts to ‘‘fee
the boundary conditions. The lower limit of the time interv
corresponds approximately to the beginning of the linear
gime. We remark, however, that at this time about 98%
the particles have already disappeared. The results are g
in Table I and Figs. 2–4. Data were averaged over4

samples for the Gaussian distribution and 103 for the uniform
and Lorentzian cases, respectively.

We see that the scaling lawa1b51 is well satisfied for
the different distributions. For the Lorentzian one, howev
the results are less precise. This is due to the fact that
scaling regime sets in for longer times and longer simu
tions would be needed to reach the same precision. Note
for a uniform velocity distribution, Ben-Naimet al. @3# ob-

TABLE I. Numerical values of the exponentsa andb obtained
from the simulations~see Figs. 2– 4!. The error is60.005 for each
value ofa andb. Results are given for three different initial veloc
ity distributions.

Velocity distribution a b a1b

Gaussian 0.785 0.195 0.980
uniform 0.795 0.195 0.990
Lorentzian 0.780 0.195 0.975

FIG. 2. Plot of the relative density~circle! and the root-mean-
square velocity~plus! as a function of time, for a Gaussian initia
velocity distributionf(v)5exp(2v2/2)/A2p. The periodic chain
of length 2 initially contained 218 particles. Data are averaged ov
104 samples. The two straight lines are obtained by linear reg
sion over a subset of points~typically for t between 1023 and 1!.
of
e
.
t

l
-
f
en

r,
he
-
at
tained a50.76 andb50.22, but with a slightly different
algorithm~which involved diffusion in addition to the ballis
tic motion! and a poorer statistics.

From the values quoted in Table I, we immediately d
duce, at least for the three different velocity distributio
considered here, that the exponentsa andb are the same. In
view of the arguments presented in Sec. III, we are led

s-

FIG. 3. Plot of the relative density~circle! and the root-mean-
square velocity~plus! as a function of time, for a uniform initial
velocity distribution f(v)5u(A32uvu)/A12, so thatM (0)51.
The periodic chain of length 2 initially contained 218 particles. Data
are averaged over 103 samples. The two straight lines are obtain
by linear regression over a subset of points~typically for t between
1023 and 1!.

FIG. 4. Same as in Fig. 3 for a Lorentzian initial velocity di
tribution f(v)5p21(11v2)21.
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57 143SEARCH FOR UNIVERSALITY IN ONE-DIMENSIONAL . . .
conjecture that there is universality for a wide class of init
conditions. However, this universality should not hold f
initial distributions that diverge or vanish atv50 @see Eq.
~30!#.

The scaling functionsC(u) have also been measured f
the three different initial distributions. In Figs. 5–7 the sc
ing functionsC(u) are plotted versus the reduced veloc
u5v@M (t)#21/2. For the Gaussian case, one sees~Fig. 5!
that C keeps its Gaussian shape untilt<0.1. In fact, a finer
analysis of the six first even moments ofC (^u2n&, with n
50,1, . . . ,5) shows thatC loses its Gaussian charact
whent*0.2, i.e., when fewer than 50 particles remain in t
system. Ultimately, when fewer than 10 particles remain
the system,C tends to a bimodal distribution. We emphasi
again that this late-stage behavior is an artifact of the fin
ness of the system. In the thermodynamic limit, the t
asymptotic behavior would be Gaussian-like. Similar conc
sions can be drawn for the uniform and Lorentzian cases~see
Figs. 6 and 7!. Indeed, after a transient regime,C adopts a
Gaussian profile untilt*0.2. These conclusions are aga
confirmed by the analysis of the moments. Thus, for th
three distributions, we conclude that in addition to the u
versal behavior of the exponent, the scaling functionsC(u)
are also the same. There is an attractive Gaussian-like sc
distribution in the long-time regime:

C~u!5
1

A2p
exp~2u2/2!. ~35!

Here again we are led to conjecture that such a beha
would be valid for any velocity distribution that takes a fini
nonzero value atv50 and is regular nearv50.

FIG. 5. Plot of the scaling functionC for a Gaussian initial
velocity distribution~see Fig. 2! as a function of the reduced veloc
ity u5v@M (t)#21/2 for seven different times. Data are averag
over 104 samples. Note thatC keeps its Gaussian character as lo
as t<1.
l

-

n

-
e
-

e
-

ing

or

In addition, the range of validity of our scaling postulat
can be tested. Indeed, from Eqs.~17! and ~18! one sees tha

n~ t !5const3$n~ t !@M ~ t !#1/2%a, ~36!

so that the log-log plot ofn(t) versusn(t)@M (t)#1/2 should
give a straight line. In Fig. 8 we reproduce this plot for
Gaussian initial distribution. We remark that Eq.~36! is sat-

FIG. 6. Plot of the scaling functionC for a uniform initial
velocity distribution~see Fig. 3! as a function of the reduced veloc
ity u5v@M (t)#21/2 for five different times. Data are averaged ov
103 samples. Note that after a transient regime not represented
C is attracted towards a Gaussian-like scaling distribution~as soon
as t*1024).

FIG. 7. Same as in Fig. 6 for a Lorentzian initial velocity di
tribution.
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144 57REY, DROZ, AND PIASECKI
isfied for times as short ast.1026 ~at this time less that 20%
of the particles have already reacted! and as long ast.5.
Note that the slope~i.e., the exponenta) obtained by linear
regression is slightly larger than the value obtained from F
2. This results from the fact that the suma1b given by the
value of the exponents measured on Fig. 2 gives 0.980 ra
than strictly 1. Multiplying the slope of Fig. 8 by 0.980 re
produces indeed the value ofa quoted in Table I. For the
uniform and Lorentzian distributions the range of validity
the scaling postulates is smaller, beginning only neat
.1023. This fact confirms the particular role played by th
Gaussian distribution in this problem.

V. CONCLUDING REMARKS

We have studied the kinetics of ballistic annihilation for
one-dimensional ideal gas with continuous velocity distrib
tion. Starting from an exact analytical approach previou
derived, we established a scaling theory for the long-ti
behavior of such systems. The validity of this scaling the
has been tested numerically for three different initial co
tinuous velocity distributions~Gaussian, uniform and Lorent
zian!. Both the dynamical exponents and the scaling fu
tions are the same for the three cases. This led us
conjecture that all the continuous velocity distributions th
take a finite nonzero value atv50 and are regular nearv
50 are attracted towards a Gaussian distribution and
belong to the same universality class. Despite several

FIG. 8. A log-log plot of the density as a function o
n(t)@M (t)#1/2 for a Gaussian initial velocity distribution„data are
the same Fig. 2; note that large values ofn(t)@M (t)#1/2 correspond
to short times…. The comparison with a straight line is excellent f
both short and long times. This shows that the range of validity
our scaling postulate is very wide for a Gaussian initial conditio
.
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tempts we have not yet been able to prove this conjectur
the framework of our exact analytical approach. We ha
only shown that a Gaussian distribution is compatible, in
long-time regime, with the exact dynamical equation~8!.
However, we have not been able to prove that this Gaus
distribution was the only possible solution.
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APPENDIX: NUMERICAL ALGORITHM

To simulate the ballistic annihilation in one dimensio
the simplest algorithm is probably the standard molecu
dynamics: Starting from a given configuration, one identifi
the shortest collision time, removes the two colliding pa
ticles, and calculates the new positions of the remaining p
ticles at this time. Starting from this new configuration, t
process is iterated. This algorithm is very simple but not v
efficient, the computing time increasing with the number
particlesN asO(N2).

The numerical algorithm we used instead has been larg
inspired by the one developed by Krapivskyet al. @4#. The
idea is to establish the list of all the~‘‘true’’ ! collision times
arranged in chronological order. From the initial conditio
we compute the collision times of each particle with its rig
nearest neighbor and sort those times into an ascending
ries, calledA, using a standard sorting algorithm~see, for
example@12#!. The shortest time of this set corresponds
the first true collision time and is the first member of the l
of the ‘‘true collision times’’; simultaneously it is remove
from A. Then one removes the pair of particles (n,n11)
corresponding to this first collision. As a consequence,
collision times associated with the pairs (n21,n) and (n
11,n12) should be discarded fromA, producing a trun-
cated sorted list calledA8. The collision time of the new
nearest-neighbor pair (n21,n12) is computed and is the
first element of a new unsorted list, calledN. The process is
then iterated starting with the sorted listA8 as long as its first
element is shorter than the shortest element ofN. When this
is no longer true, we merge both lists (A8 andN) into a new
one that is sorted. This last list replaceA and the process
continues until at most one particle remains in the syste
For the continuous velocity distribution we considered, t
merging step betweenA8 and N occurs very rarely. For
example, for a Gaussian initial velocity distribution, it tak
place approximately 100 times for 217 iterations of a system
containing initially 218 particles and the whole simulatio
used about 30 s of CPU on a Hewlett-Packard 9000 S
700 workstation. The computing time increases with t
number of particlesN roughly asO(N5/4lnN).
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